Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661727

RESUMO

We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.


Assuntos
Memória de Longo Prazo , Sono de Ondas Lentas , Humanos , Sono de Ondas Lentas/fisiologia , Masculino , Feminino , Memória de Longo Prazo/fisiologia , Adulto , Adulto Jovem , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Vocabulário , Eletroencefalografia
2.
Sci Rep ; 14(1): 9057, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643331

RESUMO

Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Memória/fisiologia , Eletroencefalografia , Sono/fisiologia , Fases do Sono/fisiologia , Consolidação da Memória/fisiologia
3.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562056

RESUMO

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Assuntos
Eletroencefalografia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Sono de Ondas Lentas/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Polissonografia
4.
Mol Autism ; 15(1): 13, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570872

RESUMO

BACKGROUND: Sleep disturbances are a common comorbidity to most neurodevelopmental disorders and tend to worsen disease symptomatology. It is thus crucial to understand mechanisms underlying sleep disturbances to improve patients' quality of life. Neuroligin-2 (NLGN2) is a synaptic adhesion protein regulating GABAergic transmission. It has been linked to autism spectrum disorders and schizophrenia in humans, and deregulations of its expression were shown to cause epileptic-like hypersynchronized cerebral activity in rodents. Importantly, the absence of Nlgn2 (knockout: KO) was previously shown to alter sleep-wake duration and quality in mice, notably increasing slow-wave sleep (SWS) delta activity (1-4 Hz) and altering its 24-h dynamics. This type of brain oscillation is involved in memory consolidation, and is also a marker of homeostatic sleep pressure. Sleep deprivation (SD) is notably known to impair cognition and the physiological response to sleep loss involves GABAergic transmission. METHODS: Using electrocorticographic (ECoG) recordings, we here first aimed to verify how individual slow wave (SW; 0.5-4 Hz) density and properties (e.g., amplitude, slope, frequency) contribute to the higher SWS delta activity and altered 24-h dynamics observed in Nlgn2 KO mice. We further investigated the response of these animals to SD. Finally, we tested whether sleep loss affects the gene expression of Nlgn2 and related GABAergic transcripts in the cerebral cortex of wild-type mice using RNA sequencing. RESULTS: Our results show that Nlgn2 KO mice have both greater SW amplitude and density, and that SW density is the main property contributing to the altered 24-h dynamics. We also found the absence of Nlgn2 to accelerate paradoxical sleep recovery following SD, together with profound alterations in ECoG activity across vigilance states. Sleep loss, however, did not modify the 24-h distribution of the hypersynchronized ECoG events observed in these mice. Finally, RNA sequencing confirmed an overall decrease in cortical expression of Nlgn2 and related GABAergic transcripts following SD in wild-type mice. CONCLUSIONS: This work brings further insight into potential mechanisms of sleep duration and quality deregulation in neurodevelopmental disorders, notably involving NLGN2 and GABAergic neurotransmission.


Assuntos
Privação do Sono , Sono de Ondas Lentas , Animais , Humanos , Camundongos , Eletroencefalografia , 60519 , Qualidade de Vida , Sono/fisiologia , Privação do Sono/metabolismo
5.
Sci Rep ; 14(1): 8652, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622265

RESUMO

This research explores different methodologies to modulate the effects of drowsiness on functional connectivity (FC) during resting-state functional magnetic resonance imaging (RS-fMRI). The study utilized a cohort of students (MRi-Share) and classified individuals into drowsy, alert, and mixed/undetermined states based on observed respiratory oscillations. We analyzed the FC group difference between drowsy and alert individuals after five different processing methods: the reference method, two based on physiological and a global signal regression of the BOLD time series signal, and two based on Gaussian standardizations of the FC distribution. According to the reference method, drowsy individuals exhibit higher cortico-cortical FC than alert individuals. First, we demonstrated that each method reduced the differences between drowsy and alert states. The second result is that the global signal regression was quantitively the most effective, minimizing significant FC differences to only 3.3% of the total FCs. However, one should consider the risks of overcorrection often associated with this methodology. Therefore, choosing a less aggressive form of regression, such as the physiological method or Gaussian-based approaches, might be a more cautious approach. Third and last, using the Gaussian-based methods, cortico-subcortical and intra-default mode network (DMN) FCs were significantly greater in alert than drowsy subjects. These findings bear resemblance to the anticipated patterns during the onset of sleep, where the cortex isolates itself to assist in transitioning into deeper slow wave sleep phases, simultaneously disconnecting the DMN.


Assuntos
Mapeamento Encefálico , Sono de Ondas Lentas , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vigília , Sono , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
6.
Commun Biol ; 7(1): 288, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459227

RESUMO

Sleep boosts the integration of memories, and can thus facilitate relational learning. This benefit may be due to memory reactivation during non-REM sleep. We set out to test this by explicitly cueing reactivation using a technique called targeted memory reactivation (TMR), in which sounds are paired with learned material in wake and then softly played during subsequent sleep, triggering reactivation of the associated memories. We specifically tested whether TMR in slow wave sleep leads to enhancements in inferential thinking in a transitive inference task. Because the Up-phase of the slow oscillation is more responsive to cues than the Down-phase, we also asked whether Up-phase stimulation is more beneficial for such integration. Our data show that TMR during the Up-Phase boosts the ability to make inferences, but only for the most distant inferential leaps. Up-phase stimulation was also associated with detectable memory reinstatement, whereas Down-phase stimulation led to below-chance performance the next morning. Detection of memory reinstatement after Up-state stimulation was negatively correlated with performance on the most difficult inferences the next morning. These findings demonstrate that cueing memory reactivation at specific time points in sleep can benefit difficult relational learning problems.


Assuntos
Sono de Ondas Lentas , Humanos , Sono de Ondas Lentas/fisiologia , Aprendizagem/fisiologia , Sono/fisiologia , Sinais (Psicologia) , Som
7.
J Affect Disord ; 354: 347-355, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479512

RESUMO

BACKGROUND: There is an urgent need for safe, rapid-acting treatment strategies for adolescent depression. In depressed adults, slow wave sleep deprivation (SWSD) improved next-day mood without disrupting sleep duration, but SWSD has not been tested in adolescents. In a pilot study, the aim was to assess the effect of SWSD on sleep physiology and mood outcomes (depression, rumination, anhedonia) among adolescents with depressive symptoms. METHODS: Sixteen adolescents (17.44 ± 1.46 yr, 12 female) completed three nights of polysomnographic sleep recording: Baseline, SWSD, and Recovery nights. Acoustic stimulation (tones of random pitch, duration, and volume) suppressed slow wave sleep (SWS) in real-time during SWSD. After each night, depression, rumination, and anhedonia severity were assessed. RESULTS: SWSD successfully suppressed SWS, increased N2, and had minimal impact on Rapid Eye Movement (REM), nocturnal awakenings, and total sleep time. While SWSD did not improve depression or anhedonia severity overall, lower baseline non-REM alpha activity and greater SWS rebound during recovery sleep correlated with SWSD-related reduction in clinician-rated depression severity. Next-day rumination severity decreased after SWSD, with sustained improvements following recovery sleep. However, rumination improvement was not associated with SWS suppression, but rather reduction in total sleep time and REM in exploratory correlation models. LIMITATIONS: Small sample size and large proportion of females. CONCLUSION: SWSD did not improve depression in adolescents overall but a subset with low non-REM alpha activity and intact homeostatic sleep regulation may benefit from this approach. Findings from this pilot study also suggest that partial sleep deprivation may be a beneficial therapeutic strategy for rumination in adolescents.


Assuntos
Privação do Sono , Sono de Ondas Lentas , Adulto , Humanos , Adolescente , Feminino , Depressão , Projetos Piloto , Anedonia , Polissonografia , Sono/fisiologia , Eletroencefalografia
8.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494417

RESUMO

During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.


Assuntos
Neocórtex , Sono de Ondas Lentas , Camundongos , Animais , Giro do Cíngulo , Hipocampo , Sono
9.
Psychiatr Hung ; 39(1): 10-14, 2024.
Artigo em Húngaro | MEDLINE | ID: mdl-38502014

RESUMO

We consider the disorders of arousal and sleep-related hypermotor epilepsy as genetic twin-conditions, one without, one with epilepsy. They share an augmented arousal-activity during NREM sleep with sleep-wake dissociations, culminating in sleep terrors and sleep-related hypermotor seizures with similar symptoms. The known mutations underlying the two spectra are different, but there are multifold population-genetic-, family- and even individual (the two conditions occurring in the same person) overlaps supporting common genetic roots. In the episodes of disorders of arousal, the anterior cingulate, anterior insular and pre-frontal cortices (shown to be involved in fear- and emotion processing) are activated within a sleeping brain. These regions overlap with the seizure-onset zones of successfully operated sleep-related hypermotor seizures, and notably, belong to the salience network being consistent with its hubs. The arousal-relatedness and the similar fearful disorientation occurring in sleep terrors and hypermotor seizures, make them alike the acute stress-responses emerging from sleep; triggered by false alarms. An acute stress-response can easily mobilize the hypothalamo-pituitary-adrenal axis (preparing fight-flight responses in wakefulness); through its direct pathways to and from the salience network. This hypothesis has never been studied.


Assuntos
Epilepsia , Terrores Noturnos , Sono de Ondas Lentas , Humanos , Nível de Alerta , Convulsões
10.
Sleep Med ; 115: 155-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367357

RESUMO

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sono de Ondas Lentas , Humanos , Doença de Parkinson/complicações , Sono REM , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/complicações , Estudos Transversais , Polissonografia , Hipotonia Muscular , Cafeína , Progressão da Doença
11.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38367018
12.
J Neurosci Methods ; 404: 110063, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301833

RESUMO

BACKGROUND: Sleep perturbation is widely used to investigate the physiological mechanisms that mediate sleep-wake dynamics, and to isolate the specific roles of sleep in health and disease. However, state-of-the-art methods to accomplish sleep perturbation in preclinical models are limited in their throughput, flexibility, and specificity. NEW METHOD: A system was developed to deliver vibro-tactile somatosensory stimulation aimed at controlled, selective sleep perturbation. The frequency and intensity of stimulation can be tuned to target a variety of experimental applications, from sudden arousal to sub-threshold transitions between light and deep stages of NREM sleep. This device was activated in closed-loop to selectively interrupt REM sleep in mice. RESULTS: Vibro-tactile stimulation effectively and selectively interrupted REM sleep - significantly reducing the average REM bout duration relative to matched, unstimulated baseline recordings. As REM sleep was repeatedly interrupted, homeostatic mechanisms prompted a progressively quicker return to REM sleep. These effects were dependent on the parameters of stimulation applied. COMPARISON WITH EXISTING METHODS: Existing sleep perturbation systems often require moving parts within the cage and/or restrictive housing. The system presented is unique in that it interrupts sleep without invading the animal's space. The ability to vary stimulation parameters is a great advantage over existing methods, as it allows for adaptation in response to habituation and/or circadian/homeostatic changes in arousal threshold. CONCLUSIONS: The proposed method of stimulation demonstrates feasibility in affecting mouse sleep within a standard home cage environment, thus limiting environmental stress. Furthermore, the ability to tune frequency and intensity of stimulation allows for graded control over the extent of sleep perturbation, which potentially expands the utility of this technology beyond applications related to sleep.


Assuntos
Sono REM , Sono de Ondas Lentas , Camundongos , Animais , Sono REM/fisiologia , Sono/fisiologia , Nível de Alerta , Homeostase , Eletroencefalografia
13.
Eur J Neurosci ; 59(5): 739-751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342099

RESUMO

Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.


Assuntos
Aprendizagem da Esquiva , Sono de Ondas Lentas , Sono , Sono REM , Hipocampo , Eletroencefalografia
14.
Sci Rep ; 14(1): 4669, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409133

RESUMO

Substantial evidence suggests that the circadian decline of core body temperature (CBT) triggers the initiation of human sleep, with CBT continuing to decrease during sleep. Although the connection between habitual sleep and CBT patterns is established, the impact of external body cooling on sleep remains poorly understood. The main aim of the present study is to show whether a decline in body temperatures during sleep can be related to an increase in slow wave sleep (N3). This three-center study on 72 individuals of varying age, sex, and BMI used an identical type of a high-heat capacity mattress as a reproducible, non-disturbing way of body cooling, accompanied by measurements of CBT and proximal back skin temperatures, heart rate and sleep (polysomnography). The main findings were an increase in nocturnal sleep stage N3 (7.5 ± 21.6 min/7.5 h, mean ± SD; p = 0.0038) and a decrease in heart rate (- 2.36 ± 1.08 bpm, mean ± SD; p < 0.0001); sleep stage REM did not change (p = 0.3564). Subjects with a greater degree of body cooling exhibited a significant increase in nocturnal N3 and a decrease in REM sleep, mainly in the second part of the night. In addition, these subjects showed a phase advance in the NREM-REM sleep cycle distribution of N3 and REM. Both effects were significantly associated with increased conductive inner heat transfer, indicated by an increased CBT- proximal back skin temperature -gradient, rather than with changes in CBT itself. Our findings reveal a previously far disregarded mechanism in sleep research that has potential therapeutic implications: Conductive body cooling during sleep is a reliable method for promoting N3 and reducing heart rate.


Assuntos
Sono de Ondas Lentas , Humanos , Frequência Cardíaca/fisiologia , Sono/fisiologia , Regulação da Temperatura Corporal , Temperatura Corporal/fisiologia , Fases do Sono/fisiologia
15.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227830

RESUMO

STUDY OBJECTIVES: In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies have also reported associations between N2 and N3 sleep delta power in specific sub-bands and amyloid pathology. Our objective was to better understand the relationships between spectral power in delta sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. METHODS: In-home polysomnography was performed in 127 cognitively unimpaired older adults (mean age ±â€…SD: 69.0 ±â€…3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow delta (0.5-1 Hz), and fast delta (1-4 Hz) frequency bands. Participants also underwent magnetic resonance imaging and Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion, and amyloid burden. Amyloid accumulation over ~21 months was also quantified. RESULTS: Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. Specifically, slow delta power was positively correlated with GM volume and perfusion in these regions, while the inverse association was observed with fast delta power. Delta power was neither associated with amyloid burden at baseline nor its accumulation over time, whatever the frequency band considered. CONCLUSIONS: Our results show that slow delta is particularly associated with preserved brain structure, and highlight the importance of analyzing delta power sub-bands to better understand the associations between delta power and brain integrity. Further longitudinal investigations with long follow-ups are needed to disentangle the associations among sleep, amyloid pathology, and dementia risk in older populations. CLINICAL TRIAL INFORMATION: Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL in supplemental materials. REGISTRATION: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.


Assuntos
Sono de Ondas Lentas , Humanos , Idoso , Sono , Fases do Sono , Polissonografia , Eletroencefalografia , Encéfalo/diagnóstico por imagem , Neuroimagem
16.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289699

RESUMO

Marine mammals, especially cetaceans, have evolved a very special form of sleep characterized by unihemispheric slow-wave sleep (USWS) and a negligible amount or complete absence of rapid-eye-movement sleep; however, the underlying genetic mechanisms remain unclear. Here, we detected unique, significant selection signatures in basic helix-loop-helix ARNT like 2 (BMAL2; also called ARNTL2), a key circadian regulator, in marine mammal lineages, and identified two nonsynonymous amino acid substitutions (K204E and K346Q) in the important PER-ARNT-SIM domain of cetacean BMAL2 via sequence comparison with other mammals. In vitro assays revealed that these cetacean-specific mutations specifically enhanced the response to E-box-like enhancer and consequently promoted the transcriptional activation of PER2, which is closely linked to sleep regulation. The increased PER2 expression, which was further confirmed both in vitro and in vivo, is beneficial for allowing cetaceans to maintain continuous movement and alertness during sleep. Concordantly, the locomotor activities of zebrafish overexpressing the cetacean-specific mutant bmal2 were significantly higher than the zebrafish overexpressing the wild-type gene. Subsequently, transcriptome analyses revealed that cetacean-specific mutations caused the upregulation of arousal-related genes and the downregulation of several sleep-promoting genes, which is consistent with the need to maintain hemispheric arousal during USWS. Our findings suggest a potential close relationship between adaptive changes in BMAL2 and the remarkable adaptation of USWS and may provide novel insights into the genetic basis of the evolution of animal sleep.


Assuntos
Fatores de Transcrição ARNTL , Cetáceos , Sono de Ondas Lentas , Animais , Locomoção/genética , Mamíferos , Sono/genética , Sono de Ondas Lentas/genética , Peixe-Zebra , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Cetáceos/genética
17.
Sci Rep ; 14(1): 951, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200079

RESUMO

Demographic changes will expand the number of senior citizens suffering from Alzheimer's disease (AD). Key aspects of AD pathology are sleep impairments, associated with onset and progression of AD. AD mouse models may provide insights into mechanisms of AD-related sleep impairments. Such models may also help to establish new biomarkers predicting AD onset and monitoring AD progression. The present study aimed to establish sleep-related face validity of a widely used mouse model of AD (ArcAß model) by comprehensively characterizing its baseline sleep/wake behavior. Chronic EEG recordings were performed continuously on four consecutive days in freely behaving mice. Spectral and temporal sleep/wake parameters were assessed and analyzed. EEG recordings showed decreased non-rapid eye movement sleep (NREMS) and increased wakefulness in transgenic mice (TG). Vigilance state transitions were different in TG mice when compared to wildtype littermates (WT). During NREMS, TG mice had lower power between 1 and 5 Hz and increased power between 5 and 30 Hz. Sleep spindle amplitudes in TG mice were lower. Our study strongly provides sleep-linked face validity for the ArcAß model. These findings extend the potential of the mouse model to investigate mechanisms of AD-related sleep impairments and the impact of sleep impairments on the development of AD.


Assuntos
Doença de Alzheimer , Sono de Ondas Lentas , Animais , Camundongos , Doença de Alzheimer/genética , Sono , Sintomas Comportamentais , Modelos Animais de Doenças , Camundongos Transgênicos
18.
Eur J Neurosci ; 59(4): 584-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37038095

RESUMO

Besides regulating the amount of light that reaches the retina, fluctuations in pupil size also occur in isoluminant conditions during accommodation, during movement and in relation to cognitive workload, attention and emotion. Recent studies in mammals and birds revealed that the pupils are also highly dynamic in the dark during sleep. However, despite exhibiting similar sleep states (rapid eye movement [REM] and non-REM [NREM] sleep), wake and sleep state-dependent changes in pupil size are opposite between mammals and birds, due in part to differences in the type (striated vs. smooth) and control of the iris muscles. Given the link between pupil dynamics and cognitive processes occurring during wakefulness, sleep-related changes in pupil size might indicate when related processes are occurring during sleep. Moreover, the divergent pupillary behaviour observed between mammals and birds raises the possibility that changes in pupil size in birds are a readout of processes not reflected in the mammalian pupil.


Assuntos
Sono de Ondas Lentas , Vigília , Animais , Vigília/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Sono de Ondas Lentas/fisiologia , Mamíferos , Eletroencefalografia
19.
Clin EEG Neurosci ; 55(2): 265-271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37331959

RESUMO

Objective. To investigate the prevalence and risk factors for electrical status epilepticus during slow-wave sleep (ESES) in patients with self-limited epilepsy with centrotemporal spikes (SeLECTS). Methods. The clinical and follow-up data of children with SeLECTS were collected between 2017 and 2021. Patients were divided into typical ESES, atypical ESES, and non-ESES groups according to spike-wave indices (SWI). Clinical and electroencephalography characteristics were retrospectively analyzed. Logistic regression was used to identify risk factors for ESES. Results. A total of 95 patients with SeLECTS were enrolled. Seven patients (7.4%) developed typical ESES, 30 (31.6%) developed atypical ESES, 25 (26.3%) developed ESES at the first visit, and 12 (12.6%) developed ESES during treatment and follow-up. Multivariate logistic regression analysis showed that the risk factors for SeLECTS combined with ESES were Rolandic double or multiple spikes (OR = 8.626, 95% CI: 2.644-28.147, P < .001) and Rolandic slow waves (OR = 53.550, 95% CI: 6.339-452.368, P < .001). There were no significant differences in seizure characteristics, electroencephalogram (EEG) findings, or cognitive impairment between the atypical and typical ESES groups. Conclusion. More than one-third of the SeLECTS patients combined with ESES. Both atypical and typical ESES scores can affect cognitive function. On electroencephalography, interictal Rolandic double/multiple spikes and slow-wave abnormalities may indicate SeLECTS with ESES.


Assuntos
Epilepsia Rolândica , Epilepsia , Sono de Ondas Lentas , Estado Epiléptico , Criança , Humanos , Sono , Estudos Retrospectivos , Prevalência , Eletroencefalografia , Fatores de Risco
20.
J Sleep Res ; 33(1): e13942, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37254247

RESUMO

Polysomnographic studies have been performed to investigate the first-night effect in insomnia disorder. However, these studies have revealed discrepant findings. This meta-analysis aimed to summarise and quantify the characteristics of the first-night effect in insomnia disorder. We performed a systematic search of the PubMed, Medline, EMBASE, Web of Science and PsycINFO databases to identify studies published through October 2019. A total of 11,862 articles were identified, and seven studies with eight independent populations were included in the meta-analysis. A total of 639 patients with insomnia disorder and 171 healthy controls underwent more than 2 consecutive nights of in-laboratory polysomnography. Pooled results demonstrated that both variables of sleep continuity and sleep architecture, other than slow-wave sleep were significantly altered in the first-night effect in insomnia disorder. Furthermore, the results indicated that patients with insomnia disorder had a disruption of sleep continuity in the first-night effect, including increased sleep onset latency and reduced total sleep time, compared to healthy controls. Overall, the findings show that patients with insomnia disorder experience the first-night effect, rather than reverse first-night effect, and the profiles of the first-night effect in patients with insomnia are different from healthy controls. These indicate that an adaptation night is necessary when sleep continuity and sleep architecture is to be studied in patients with insomnia disorder. More well-designed studies with large samples are needed to confirm the results.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Sono de Ondas Lentas , Humanos , Sono , Polissonografia/métodos , Latência do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...